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I. INTRODUCTION

Laser aspectrogscopy has revealed a rematrkable intricacy in the
rotational, vibrational, and electronic energ{ levels for polyatomic
molecules. The infrared spectra of SFG,“'10 CFq,lllilzl and related
molecules contain several levels of structure on top of structure which
resembles a fractal in some ways. The purpose of this article will be to
exhibit some of (his structure and introduce the simplest theoretical
Interpretations of it which are presently avallable, 13]

The theoretical interpretations are based upon quantum and semi-
classical models for the dynamics of angular momenta for electronic and
nuclear orbits and spins, The models show that very complex spectra can be
understood in terms of comparatively simple non-linear classical rotational
dynamics combined with certain quantum tunneling processes.[14o15] The
time scales for the classical and quantum moticns vary over many orders of
magnitude, and this accounts for the intricate structure of the molecular
spectra.

Fig. 1 represents an attempt to exhibit the complex spectral structure
which can be seen using modern laser technolegy. Not too many years ago all
this structure would have sho/n up only as a unresolved 'landscape" on an
infrared gspectral trace, and it might have been called a vibrational "line"
or "resonance." However, is quite clear from Fig. 1 that this "line'" is
actually made of many 'sub-lines." Indeed, these lines contain lines which
contain finer lines and so forth to yield a complex pattern with literally
thousands of resonances,

One wonders wlhat the SFg moiecules could be doing to make all these
spectral features. The designation "v," refers to a particular type of
dipole-active vibratisnal motion of the SFg molecule. All of the v,- spectral
features in Flg. 1l coriespond to an excitation of this vibratfon in one way
or another, Still one wonders: Why can a y,-vibration be excited in so many
different ways?

Much more clearly defined answers to such questions come out of a new
approach to the study of rotations and angular momentum states of polyatomic
molecules.[16] 1t was already known that the features In Flg, 1 correspond
to transitions between states with different combinations or arrangements of
angular momenta iu the molecule. However, pravailing theoriecs for
spactreacopy lackad a clear geometric picture of how these angular momenta
were arringed Iin each state, and there was no way to relate the complex
spectra to a well defined dynamics for the molecule.

There are threc types of anpular momentup ipvolved in the v, spectra.
First, there are the angular momenta labeled R, J, or F associated with the
overall rotation ¢f the 5F, molecule. Second, there is the vibrational

TPresuntly on lecave from the School of Physics and Center for Atomic and
Molecurlar Studies, Guorgla Institute of Technology, Atlanta, GA 30332.
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angular momentum T associated with the eccentric or crankshaft-like motion of
the v, -vipration. 14] Third, there is the total nuclear spin angular
momentum [ due to the six F-nuclei which each have §p1n-1/2. The sum of the

momentum R of the molecular rotor and the momenium £ of the vibrator is the
total mechanical momentum

J =R . (1.1)

The overall total angular momentum

+> + + > > +

F = J+L = R+ +1 (1.2)
includes that of the nuclear spins, as well,

The new approach to the theory of rotational spectra ls based upon the
concept of the rotational energy (RE) surface as developed by Harter and
Patterson.[13,14] In the following sectinon this approach will be
introduced for the simplest case in which ri?rational and nuclear spin
angular momentum effects are neglected {R=J=F), This will allow a simple
explanation of the spectral fine and superfine structures or cluster patterns
which appear in Fig. lb and ¢, Subsequent sections will show how these
patterns are modified by other mechanisms sucl. as Coriolis interaction with
the vibrational momentum, higher order tensor Hamiltonians and nuclear spln
effects. The effects of electronic spin and orbital coupling are not
considered here, but it appecars that they should be treated simil:rily.

II., ROTATIONAL ENERGY SURFACES AND SPECTRAL CLUSTERS

For molecules having a cubic, octahedral, or tetrahedral structure the
following lamiltonian form due to Hecht{l?] hag been extremely useful for
modeling their rotational spectra.

2 4, 4, 4 4
H = BJ +10t066[Jx+Jy+Jz-(3/5)J ] (2.1)

The first term represents the rotational energy of a spherical top whose
moment of intertia is I = 1/(2B). The second term represents centrifugal
distortion as explained below, The distortion term is the lowest degree
polynomial in the angular momentum operators (ij J,) having cublc

symmetry without also having spherical symmetry., " (The second degree
po'ynomial J2 - Ji&J$+Ji in the first term obviously has spherical symmetry
as well as cuolc syumetry.)

The standard approach for solving Ham{ltoniana such as (2.1) involves
rewriting them in terms of Racah tensors T,. Following Hecht, 17] one
rewrites the fourth degrec cubic part as fullows.

4 4 4 4 4 4 1/2 4,4

IR =507 = a5 [ TgH(s/14) R (T )} ] (2.2)
This {s done so that matrix elements in an angular momentum basis can be
derived casily using the Wigner Eckart theorem
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However, since most state for heavy polyatomic molecules involve high angular
quanta (Jllo) this approach becomes computationally laborious since many
large matrices must be diagonalized numerically by computer. Also, the
physical interpretation of the results of the diagonalizations are generally
obscured, and important physical effects may be unnoticed or unexplained.

Computer diagonalization studies by Lea, Leask, and Holflls]; Dorney,
and Watson[lg]; and Fox, Galbraith, Krohn, and Loucklzo], revealed a
complex yet surprisingly orderly cluster structure of the rotational energy
levels. The first detaliled explanation of the superfine structure of
clusters was given by Harter and Patterson.[ 15,21 This explanation can

now be made more clearly by introducing the concep. of the rotational energy
surface.[13].

To obtain the rotational energy surface of a Hamiltonian such as (2.1
it is only necessary to plot it in an angular momentum polar co-ordinate
systems (B,Y) defined by the following

Jx m - J sinB cosy
Jy = J sinB siny (2.4)

J = J cosy
2

Here the angles (-8) cnd (-Y) are the polar angles and aximuth, respectively,
of the classical angular momentum vector J = (J . J ) in the “»ody frame of
the molecule, The negative sign in t..lis defini¥i¥n®is convenient since the
sense of rotatlon for the body frame is the reverse of that for the
laboratory. The angles 4 and +y are two of the co~vantionally defined Euler
anzles (o,8,Y) as explained in Ref. [13],

Using (2.4) to rewrite the Hamiltonian (2.1) onc ohtains

H o= BJ2+tOAaJQ(35cosaB-30cosZBFSsinchosby+3)/2 (2.5)

The polar plot of this function is shown by the surface in Fig., 2 for
appropriate values of the constants B and tgyu. (The location of features on
the surfare 19 independent of the values of these constants,) One sgshould
remember that the energy is being plotted radially outward or upward. The
radius ot each point on the rotational energy (RE) surface represents the
rotational en.rgy obtained for the particular angular momentum direction
(=B,-Y) subject to the constraint that the magnitude J of the angular
momentum is constant., It is often convenient to take unilt values for J,

f.e, tc let

2
x

J-( 1/2-

+2+3%) 1, (2.6)
y 4

when plotting the classical surfaces,
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=~==E-sphere sese Separafrix
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| The rotational energy (RE) surface for the SFg molecule, The
rotational energy is plotted radially as a function of the
direction of the angular momentum J. Topography lines corresnond
to trajectories of the J-vector precesaing In the molecular tcame
with constant ratational energy. (At the sama time J {s a constant
vector in the laboratory frame.) Dotted lines indicate

separatrices, and dashed lines are conatant energy tunneling paths
on the E-sphere.

It is useful to understand why the surface in Fig. 2 has peaks along the
X, ¥, or z axes and valleys in between, It i3 helpful to imagine an
octahedral SFg molecule with the S-F bonds along the same x, y, and z axes as
Fig. 2. It often happens that an RF surface has a shape that is roughly
similar to the molecule it is supposed to represent. (However, one should
not forget that the RE surface exlsts in an energy-angular momentum space

(E,&), only). 1If the SFg molecule rotates around the (10C) directions(i.e.,
Xy, ¥, and z axes) it will be centrifugally distorted less than by rotation
with the seme J around (l1l1) directions in between., This ls because the
radial S-F bonds are severai times stronger than the F-F "bonds". Since
centrifugal force acts perpendicular to the rotation axis or J=-vector, it
will be more effective wheu J is not along the S-f axes but ir between them.
Greater distortion corresponds to greater effective rotational inertia and
less enerzy, and so the RE surface has valleys on the (ill)-axes,

Therefore the RE surface is an etffective energy surface that is supposed
to account for the inertial deployment and shifting of cargo on board the
molecule, 38 {t rotates in space. It provides an efficient way to show the
consequences of conservation of angular momentum (J) and energy (H). The
constancy of J is implicit in the conatruction of the RE surface, and
constant=i loci simply corragpond to topography li.es in*FLg. 2. Since
energy is plotted radially, the angular momentum vector .J must lie along the
intersections of an RE surface for a given J and an energy sphere for a
given i, In the abscnce of exterual torque, the J-vector must remain fixed
:in magnitude and direction {n the laboratory, but in the budy frame {ts
direction (but nut magnitude) will change as it moves alony an RE surface



topography line, This motion corresponds to an overall precession or
nutation of the molecule,

The speed or frequency of the precessional motion is determined by the

gradient or slope of the energy surface. For each J vector position there is
an angular velocity vector given by Hamilton's equation

&>
w =

’ (2.7)

w jo
[ =

»
and this determines the speed of J in the rotating body frame.

s
W o= - wxJ (r.8)

For qualitative purpose the following left-handed mnemcnic Is sufficlent:

the J vector precesses clockwise around RE surface maxima (left thumb up) and
counter clockwise around minima. (The same rule applies to wind directi.n
around highs or lows In the northern hemisphere.) The arrows on the
§opography lines in Fig. 2 indicate the directions of precession for each
J-vector trajectory.

One of the most powerful features of an RE surface plcture is that
trajectories on the surface can of*ten be related to quantum energy levels and
spectral fine structure, In Fig., 3 the trajectories shown in Fig. 2 are
associated with energy levels of SFg in thk J=R=30 vibrational ground state
manifold. More precisely, the trajectories are associated with clusters of
energy levels where the number of rotational levels In a glven cluster equals
the number of equivalent but distlnct classical trajectories. For example,
the third highest trajectories ( ... these are marked with arrows in the
upper right hand side of Fig. 3.) are associated with the third highest
cluster of levels., The third circle from the lower lefthand side of Fiz. 3
displays a highly magnified view of a cluster of levels labeled E, T;, and
A1+ This cluster contains six levels altogether, as explained below.

The appearance of clusters in molecular spectra was one of the
surprising revelations provided by modern laser spectroscopy.[zo
Previously, the well known group theory of quautum energy levels, established
by Wigner and developed in dozens of textbooks, was supposed to iccount for
all degeneracy due to symmetry of quantum energy levels. For example, levels
labeled by octahedral symmetry species L and T; (or T,) were understood to be
doubly and triply degenerate, respectively, while species A] (or A;) labeled
single non-degenerate levels. A coincidence of any two or more symmetry
species in the absence of higher symmetry was often referred to as an
"accidental degeneracy",

However, the near degenerac!es of two, three, or four symmetry species
in the clusters findicated by Fig. 3 are clearly not accidents, In fact, the
patterns of energy levels provide a direct comparison of classical vs,
quantum mechanical behavior. The clusters are associted with a classical (or
semi-classical) Jegeneracy of cquivalent biLt disjoint trajectcries for
angular momentum ptecession, For example, each trajectory around one of the
four 'fold (C,) symmetric peaks has the same energy us an equivalent onc on
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each of the other five peak.. BEach set of six classical trajectories
corresponds to one of the (, clusters on the lower righthand side of Fig. 3.
Each ¢ cluster has six rotational sublevels in the form of a (T1T2) or an
(ATE) combination., On the righthand side of Fig. 3 there are eight
equivalent copies of each classical trajectory near. the bottoms of three-fold
(C3) symmetric valleys. Each set of elght corresponds to the same number of
sublevels within C3 clustcrs (A;T1T2A2) or (T1ET2).

The spacing and splitting of the clusters provides a direct measurement
for the rates of classical versus quantum angular momentum dynamics. The
rates for classical precessional motion are proportional to the inter-cluster
spacing such as the (1.8x10-" em~! = 5.3 MHz) interval between the top two
clusters in Fig., 3. The rates for quantum tunneling are proportional to the
intra-cluster splitting such as the (1.6’(]0'6 cm'1 = 4,8Hz) splitting of the
top cluster in Fig. 3. Note that the classical precessional frequency for
the top cluster 1s a%out a million times faster than the quantum tunneling
frequency. This quantum tunneling frequency represents the rate for a
classically impossible feat in which the molecule jumps from one equivalent
precessional trajectory to ancther.

Inter-cluster spacing in called fine structure splitting while the
intra-cluster splitting is called superfine structure splitting. Generally,
the splitting of superfine structure is much finer than that of the 'fine'
structure since the corresponding quantum tunneling 1is much slower than the
classical precession. However, if the different classical trajectories have
points that are sufficiently near one another, then the quantum tunneling may
become as rapld as the classfcel precession. This happens in what is called
the separatrix or saddle point region of the energy space,

The dotted curves on the RE surface in Fig. 2 or 3 are called
separatrices, and the separatrix segments connect saddle points. These
dotted curves are called separatrices since they separate nearby trajectories
which precess around different axes, and they lie on an energy sphere that
passes through the saddle points., Equivalent but distinct trajectrories with
energles slightly above or below the separatrix energy will form avoided
crossings at each sadile point. In the nelghborhood of the saddle point, the
speed of the classical precession will be greatly reduced since the RE
surface slope is nearly zero. However, the quantum tunneling wiil be greatly
enhanced near these avolded crossings, Energy level clusters near the
separtrix energy will have vanishing fine structure splitting since the
classical precession rates are vanishing, but the tunneling frequency will
suddenly blow up. In other words the cluster structure is completely melted
away at the scparatrix energy as can be seen in Fig., 3. The dynamics of a
molecule near the separairix energy may be extremely complicated and very
sensitive to initial conditions. This has to be so since the separatrix
marks the point where the molecule switches from C; type clusters ard valley

precession to a completely different C type cluster and precession around
peaks.

The C3-cluster separatrix-C,-cluster structure is clearly visible in
high resolution spectra. Probably the clearest and most beautiful examples
so far are shown in laser spectra taken by Alan Pinel 22 from cubane

(Calig). A (J=36) example ls shown in Filg. 4 and it has a structure similar
to that of (J=30) levels in Fig. 3. The relative heights of the absorption
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peaks are determined by Pine from nuclear spin degeneracy and not simply by
counting A, T, and E rotational degeneracies. A simple method for deriving

XYe and XYg spin states was given by Harter and Pattersonl16,22] and will
be described briefly later.

CUBANE: C.H, Via C-C Stretch
R(36)

0
23
27 27
33
E 4,
FyF
Fy Fl. F'o eo a0
. as 3tF1 w  Frtho (7] ¢ e
E4F;+A EtFata, 270 oy
F+E+F, kA atrte AR +E
)
AgtF +F,4A,
Flg. a. Spectrum by Alan Pine of Cubane Cglly vjz vibrational traasition

R(3v). (See Hef. {2Z].) Three-fold clusters are separated from
four-fold clusters by an uneven spectral scparatrix reglon. Note

that F symmetry lavels in the flgure are the same as T labels in
the text,

In Fig. lb there 1is an example of a J = 88 fine structure manifold of
clusters with the details of the superfine structure shown below it in Fig.
lec. It is worth noting that Fig. 1 and 4 represent quantum transitions in
vibrational spectra involving the rotational levels in Fig. 3. It will b2
shown in Sec. VB that the relevant rotational emergy surfaces for
vibrationally excited states with large Coriolis interactions can have the
same shapes as the basic surface shown in Flg. 2. In thls case spectral
structure is similar to level structure,

Before describing other types of RE surfaces we shall briefly mention an
elementpry semi-classical calculation of Cy-type fine and superfine energy

levels.l 1 This uses an Euler angle adaption of Bohr's original action
quantization rule

2n _+
A= fo S mn n=J,J-1 ... (2.9)

where J, = J, 1s the component or J about the C, axis of quantization
found by solving (2.4) and (2.5), i.e.

t . {J2(°°="Y+sin"v>¢[t(cos“w+a1n“v+1)-J“(cos"v+sin“v)ll/2}1/2
Y

J (2.10a)

cos“YFsLn“7+1
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where

4
e =(E - BJ2+3J /5)/10 t (2.100b)

044 °

For more accurate results one uses the quantum expectation values for angular
nomentum magnitudes i.e., P+ J(J+1) and J* s (3(3+1))2.

One varies the energy until the quantization condition (2,9) is
satisfied. For J=30 one obtains E, = 5.29, 3.53, 2.03, 0.79, -0.22,... in
units of 10" ecm™'. These compare well with the exact values of 5.31, 3.54,
2,04, 0.80, -0.20,... obtained by the or lengthy procedure of numerical
diagonalization. Note the classical precessionai frequency (v.) is given
by the well known action derivative formula

.1
A
n AE An
V. " (ﬁ;) * An BA - AE/h (for An=l) (2.11)

This confirms the relation between V. and fine structure splitting AE,
The superfine splitting is determined by a tunneling amplitude

o1

S m vce- (2.12)

where

9 = | JO(E_)dy (2.13)

path ¥ n

1s an integral over a saddle point., An example of such a path is the dashed
path connecting the top G, trajectories round the J, and T, axes in

Fig. 2. The limits of the tunneling integral are the closest approach points
cn the quantizing trajectoories connected by a path, The tuaneling
amplitudes 5 appear in a tunneling matrix

E 0 S s s S\ (00)
0O E S s 8 35 |(=1C0)
<H> = S S E o s S |(o10) (2.14)
S S 0O E § S |(0-10)
S S S s E 0 |(ool)
S S S S 0 E J(00-1)

which connects the six equivalent C, trajectories tha have energy E around
the axes {(100).(-100),...]. The eigenvalues

Al T E

h™ = E+4§ h* = E h™ = E=2§ (2.13)
of this matrix determine the superfine structure. Note that the T) level is
twice as far from the A level as the E level, This is what is observed in

(ATE) cluaters in spectra such as Fig. l-4 where "nearest neighbor" tynellng
is the dominant quantum process. Other tunneling processes are discussed In

(15].



III., SYMMETRY ANALYSIS FOR CLUSTERS

The symmetry analysis for spectral clusters way seem at first to be a
little peculiar. Normally one expects a reduction in symmetry to cause the
sp''tting of degenerate energy levels. For example, consider a reduction of
cuvic-octahedral (0) symmetry to C, symmetry by applying a z-magnetic field.
This should cause the Zeeman splitting of the triply degenerate T; level into
three levels of m=1,0, and -1. (The Ty state 1s like an £=1 p-type atomic
orbital,)

Now a classical G, -type cluster state with negligible tunneling also
represents a reduction in symmetry if the molecule is stuck precessing on one
of six Gy -svnmetric trajectories. The molecule is adlabatically distorted
fromn a perfect octahedron into something which really has no symmetry at
all. At best it has a dynamical symmetry associated with a particular
representation of the local C, symmetry of a single trajectory. However, the
effect of thi- symmetry breaking on the spectrum is opposite to that of the
Zeeman effect, Now the levels unsplit or cluster instead of splitting.

The differerce is that in the Zeeman example the symmetry of the
Hamiltonian was reduced artificially or externally, Clustering and many
other related effects are associated with what should probably be called
internal, sportaneous, or dynamical symmetry breaking. 1In the latter the
symmetry of the underlying Hamiltonian is not disturbed, but at some point
the wavefunction can be regarded as having collapsad or locked into one of
several equivalent alternatives. This is a touchy point since this collapse
cannnt be brought about solely by Schrodinger dynamics. At some point a
projection or "measurement'" must be invoked. In the end the symmetry
analysis and quantum mechanlics must be made to produce localized wavepacket
states that have "permanently" (for neglible tunneling) lost some of the
symmecry they had before they were born. Something like this is needed in
order that a classical world can make its appearance, All classical entities
which we so take for granted such as nuclel, atoms, molecules, or chemical
physicists must each have given up a considerable amount of symmetry in order
to exist.

To understand th2 symmetry analysis for elther type of symuietry breaking
let us return to the (, Zeeman example. A well known correlation exists
between the octahedral representations and those of its subgroup C,. Let us
label the C, rtepresentations using azimuthal quanta-modulo four i.e. [OH. 1y,
2, Ju}. For example, the Ti; representation 1s correlated with m=ml=l,,
m=0=0,, and m=-1=3, according to Zeeman splitting, The T, correlation is
recorded in che T} row of the G correlation table in Fig, 5 along with the
other O-representations. The rows of C; and C3 tables provide similar
correlations appropriate for the Zeeman type aprlied aymmetry brealing.

The rematrkable thiny about thes: tables is that the columns provide the
necessary correlations for the clusters and spontaneous symmet.y breaking.
For example, the O column in Fig, 5 contains the cluster (A1T\E). Whenever
the azimuthal angular quantum number assoclated with a given quantizing C,
trajectory is O, (i.e., zero-modulo-four) then the (A]T{E) cluster will be
assoclated with that trajectory. This happens in Fig., 3 and 4 far K, = 30,
32, 28, 24,,.. and in Fig. 1 for K, = 88, B4, ..etc., For odd values
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Fig. 5. Symmetry correlations for vctahedral syminetry species and those of

subgroups C3, C2, 2nd Ci. (After Ref. [13).) The subgroups are
possible symmetries for classical trajectories on octahedral RE
surface. The columns of each tuble give the number of each
octahedral species i{nvelved in a particular type of cluster

in Figs. 3, 4, 8, or 9. An XYg molecule is sketchd rotating
approximately as it would for each of the three subgroups.
(Precession motion is not being shown.)

of the azimuthal quantun number on C, trajectories the lor 3, cluster (T;T,)
appears. The @ clu-ters correspoad to the classical picture of SFg rotation
sketched above th G, table, Similar analysis applies to the C; clusters
using the C3 table in Fig, 5. Examples of C2 clusters will be shown in

Sec, V. Since tle two fold axes In fig. 2 and 3 contain saddles and
separatrices, clustering In impossible there.

This symme:ry analysis of clusters ls based upon the :heory of induced
representations,tl,4 There are many new applications of thls theotry, but
possible none so prevalent and directly observable as in the rotational
spectra of common polyatomic molecules, We briefly consider another
application which helps to derive nuclear spin and hyvperfine properties,

IV, SYMMETRY ANALYSIS FOR NUCLEAR SPINS

A polyatomic molecule such as SFg cr Cglig can be regarded as undergoing
spontaneous symnetry breaking in order to anhieve its classical structure and
cubic symmetry, Without this classical structure there is a much higher
symmetry which includes the arbitrary interchange of the identical nuclei,
The permutational symmetry S¢ of six identical F nuclei has 6!=720 operations
and {s thirty times larger than the cubic rotation group O which has only
twenty=-four rotations. This corresponds to thirty equivalent choices for
classical valleys into which the nuclear configuration could finally cellapse
in order to make a stable SFy; molecule. The eight Il nucleif must choose from
1680 equivalent final configurations around a cublc Cy frame even if that
frame ls already established,
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The correla .ion between the local cubic O-symmetry representations and
the much higher Sg or Sg representations is analogous tc¢ the correlation
between C, symmetry and O representations in rotational cluster analysis. A
partial set of correlation tables appropriate for snin 1/2 nuclei F and H a:ie
given below for Sy, Sg, and Sg correlations with tetrahedral (T) and
cubic (0) symmetry of XYy, XY, and XYg molecules, respectively. The S,
representations are correlated with Young spin tableaus which describe the

states of'total nuclear spin (I=0,1,2,...) allowed by the Pauli exclusion
principle.-16-23]

Table I. Correlation between tetrahedral or cubic representations and
Paulj-ellowed total nuclear spin quanta I=0,1,...,4.

(a) Su+T (b) Sg+0 (c) Sgto
ETA E Tl Tz Al Az E Tl T2 A Az
jos]

gl . .| =0 =l .1 2 . ] 1=0 E‘z. 2 4 . | 1=0
B 1. 1 EE 12 . . 1 1 15 3 . 2 1
E . . 1 2 - 1 . 1 'Y . 2 ? 3 1 3 2 . z
st ¢« . 1 3 Ep .1 1 . 1 3
g E L] L] ] 1 [ ] 4

One notes that each O species is correlated with a supercluster of
different nuclei spin states. For example a T; state of cubane {Cglig) 1is
correlated with 5 multiplets of total nuclear spin I = 1 and one each of spin
I =2 and 3 or 27 states altrgether, T; is correlated with two I=0 singlets,
three each of I=1 and I=2 and one I=3 septet or 737 states altogether. This
explains the relative intensity values 27' and 33 written above the T, and T,
lines in Pina's spactrum in Fig. 4. (Note: T means the same as F.)

The absorption peaks associated with clusters have relative intensities
which are the sums of those of their constituents. For example the (T)T;)
clusters have relative intensity (27+33 = 60). Howevar, the effect of
clustering and related rotational dynamics on spin states is muca more subtle
than this. As the clusteir splitting or S becomes s.ialler the nature of the
nuclear spin state may te drastically altered. Symnetry specles which
normally are prohibited fror mixing can be strongly mixed and total nuclear
spin (I) may no longer be a good quantum number, This can happen whenever
the superfine splitting 1s comparable to or less than t e hyperfine, i.e., ,
less than abour 20 kilz.

Since the superfine splitting drops exponentially according to (2.12)
there can be many clusters in which hyperfine mixing of species plays a major
role. These are called Caser clusters in Fig. [d-e. It is clear that many
case 2 clusters exist, Using extraordinary laser techniques Christian
Bordal 3:23:26] hae observed man{ examglea of hyperfine mixing in case 2
clusters in SFg. Jacques Bordel25)20]) hay verified the effects in detailed

computer studies, These experiuents open a new era in the study of molecular
scructure and dynamics.

The dynamics ot nuclear oplns in the presence of non-linear rotational
dynamics neads to be analyzed in more detail, The detailed spectra of strony



case 2 clusters as well as borderline case l-case 2
understood.
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2 clusters need to be
Preliminary studies include the use of cas1-+2 correlation

diagrams such as Fig. 6, and approximate quantum models of the resulting

energy levels.l 14]

The resulting spectral patterns are called

superhyperfine structure in Fig. le and should lead to many interesting
effects involving nuclear spin-rotation coupling and RE surface dynamics,

SFe h
I

sketched on the rign'%~1d slde, K o
the RE surface tunnalirg amplitude 5§ vanishesx the three multiplets '\ '
are drawn togethar and the symmetry species become mixed,

\ Uy
resultly spectrum fn called superhyperfine or cawe 2 structure, W-2)
(See alao Fipg, 1d and ».)

We consid:r now some related effects involving some different kinds of
RE surface dynamics and vibration-rotation coupling.

y
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V. OTHER TYPES OF RE SURFACES AND SPECTRAL PATTERNS

We consider now some different possibilities for RE surfaces and their
resulting spectral patterns, These represent only a few of the many
interesting effects that can be discovered using RE surface plctures and they
should be observable in laser spectra of polyatomic molecules.

A, Fourtk and Sixth Rank Tensor Combinations

The RE surfaces and spectra of the combinatfon tensor

-~ ~

6(v) = cos V Ta + sin v T6

(3.1)
wi'l he displayed for a range of values for the mixing parameter

' «0, 1/6,,4.,M. The first term involves a normalized fourth rank tensor
proportional to the one given in Egs. 1.1, 2,2, and 2.5.

“e anoM + snetrbet) (5.2)

- (21/21°n)1/2(35cosher30coszBP531néﬁcosby+3)

The gsecond term is a normalized sixth rank tensor which also has cubic
symmetry.

™ e (/o)A 2l )]
(5.3)

12 (231c0sP8-315c0s*E+105c0s28-2151n"3 (11c0s20-1) costy=5)

= (1372} 31)

One may plot each T41® for a given ' as an RE surface as was done In
Fig., 2 for the v=0 case.! 27| yoyever, plotting in the spherical geometry
can make it difficult for one's eye to spot saddle points or other flat
regions. Therefore we shall bor:ow a technique from world maps and plot the
rotational energy along the z-axis above a s%ereographic projectlion of
roughly half the unit sphere, The x and y co-ordinates on the projected
plane will be given Lln terms of the polar angles B and Y by

x = tan(B/2) cos(y)
(5.4)
y = tan(B/2) sin(y)

Thus the equator (B=r/2) becomes a unit circle Iln the x-y plane. (In fact
any circle on the sphere is mapped into a circle or straight line on the x-y
plane.)

The T41® RE surfaces are plotted as functionn of x and y
(-1.0¢x,y<1.0) for several values of v in Fig. 7. The plots are } D stereo
dcawings which can be viewed by relaxing the eyes so that the left and right
eyes see the left and right images, respectively. A asterco viewer or a card
held between the drawings may help one enjoy th- 3D views more easily. Oun-
should first examine the v=0 drawing in Fig, 7(a) which repreaents the top
half of the RE surface in Fig, 2. Note the peaks on four'fold axes, valleys
on three-fold axes, and saddles on two-fold axes. The contours of Fig, 2 are
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not repraduced on Fig. 7, but one can see approximately whece they would go
since the constant energy surfaces in Fig. 7 are planes parallel to x and y.

Next one should examine the v=2.0(n/6) surface in Fig. 8(c). 1It is
clear that the two-fold axes no longer have saddle poiuts but have developed
fairly deep valleys, This means that some topography lines or classical
trajectgories will encircle the two fold axes, and that T4y 6 nperators with
approximately the same v will have two-fold clustera., Thease are of the form
(A1ET1T2T;) or (AET|T;Tp) obtained from the columns of the C; table in Fig.
5, and each have 12 rotational sublevels altogether.

The eigenvalues of T415 for J=30 are plotted as a function of v(0<v<m)
in Fig., 8 below. At v=0 the spectrum has the same form as in Fig, 3, but it
quickly changes as v varies, Clusters trade species and form new clusters
including a pair of two-fold clusters that go from about v=0.4(%/6) to about
v=4,6(n1/6) in the lower center portion of Fig. 8. The superfine structure of
the upper one is visible withou. magnification. Twelve states in five
levels are crowded together in these clusters,

%cosscT%3ms) EIGENJALUES

4-FOLD
CLUSTERS
) ) ()
P -l —d. ek ot im e
[4 1 F L} 4 L [
» IN UNITS OF (w/6}
Flg. B, Energy levels for wined tensor T¥16=cos vT“+sin vT® as a function

of wmixing anple v for J=30, (After Ref, [27].) The v=0 ar vsn
laveis are similar to those in Fig., 3. The arrows indicate the
levels corresponding to RE surfaces In Figa, 7 (12, (e), (d), und
(a), respectively,

The surfaces at the values v=0.414(7/6) and vm4.648(n/6) whera the
two- fold clusters begin and end are shown in Fig., 7 (b) or (e). These are
valuds for which the two-fold energy equals the energy at the three or
fold fold axes, respectively. From Fig. 8 one can see that the enerpy
spectrum is dominatyd at these points by four or three-fold cluasters,
respectively., Finally, one should note that the vax surface in Fig 7(f) L=
just an upside-down version of the v=y surface in Fig. 7(a).

The pattern of chang'ng zeography and eipgenvalues seen in Fips. 7 and 8
will be similar to that which occurs in a much more complicated Coriclis
coupling problem discussed in the following section.
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B. Scalar and Tensor Coriolis Comhinations

The fundamental V3 and v, vibrational states are facr spanned by a
dipole active triplet of vector-iike base states {¢1, ,_1} of vibrational
angular momentum £=1 and cubic symmetry species T;. Tge coupling of the
vibrational angular momentum £ with the rotitional momentum R yields a total
angular momentum J=R+{ which is conserved. In SFg and other similar
molecules most of the angular momentum counling or Coriolls effects are well
described by the following Hamiltonian [ 28]

2 + +>
H, = v+BJ +2BzJe2+t (5.5)

2 2 4
22“[v (rotation)xv (vibration)]Al

where th first two terms determine the vibrational and rotaiional energy,
and the ‘cond two terms determine the vibration-rotation or Coriolis
interactions,

We shall compare the spectra and RE surface dynumics of the interactions
by varying the coefficient B (B-zeta) of the scalar Coriolls operator for a
fixed value of the tensor coefficient ty;,. We shall once again treat the
angular momentum as a semi-classical quantity which precesses around
topgraphy lines on an RE surface. The problem is: What RE surface?

This is a new approach to Coriolis effects, but a useful analogy can be
made with older problems, Jahn, Tellar, and Renner studied
electron-vilration vibronic interactiuvas .nveolving two, three, or more
electronic base functions {¢1,¢2.¢3....} with the same or nearly the same
energy. As is well known this degeneracy signals a possible "breakdown'" of
the Born Oppenheimer approximation and the whole system electrons and
vibrating nuclei can become "floppy'. To study the dynamics of such a systew
one constructs n mulriple interpenetrating potential ener;y (PLE) surfaces by
dlagonalizing an effective Hamiltonlan in tine electronic basis
{@1,¢2,...¢n} as a function of vibrational co-ordinates,

To study the Coriolis dynamics we shall similarly diazonalize an
effective Hamiltonian in the body defined hasis

of vibrational functions and plot the thrne resulting functions of the
angular momentum direction angles {B.Y} or the projected {x,y} co-odinates
given by (5.4). This will yeld three sometimes iuterpenetrating RE surfaces
which will provide {nformation about Coriolis dynamics and spectra.

The details of the derivation of the effective Hamiltonian {s mostly
described in Ref. 28 and cannot be repeated here due to lack of space. The
result in the {n:} body basis is the following. (llere we ignore v and 8J2.)

Iy iL> LI
i - 2t 12 3 cos2p-1l -2/Taln8cosg(couy-lsiny) 8in2B (6cos2yH 4sin 2y)
' body 224° cc. -2() cos“B-1) z/zstnacosa(cgsy-isiny)
cc. cc, Jcos“B-1
cosf sinf (cony- isiny)/V1 0 _
+285J te. 0 sinp (cosy- Lsiny)/Y2
cc. cc, -cosfl

(5.6)
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For many purposes it Ils mure convenient to have this matrix in the
laboratory defined basis. ue shall designate the lab basis by

{p> = IR=J4+1> , Jo> = [R=3> , IR- = IR=J-1>}

in correspondence with the P,Q, and R branches of a w spectrum (See Fig. la)
which result from transitions to these states when B is much larger than
tyo,« In this representaticn the scalar Coriolis operator JefL is diagonal

|p> Q> IR>
>, = 2e,. 3 /Hpv Hpq Hpr
1ab = 2224 o ) u
\ P2 Q QR
w*
HEe HaR HRr
+ 2B J 0 0
0 0] o]
0 0 -2BgJ

and the tensor Corlolis components are giver as follows.

"pp = Har = (35cos“e-30coszs+5s1n“scosax+3)/4 - - uqq/z (5.8)
3 2.

”PQ- 5sing{ 7cos 8- 3cosB-sin"B(cosBcostiy+isiniy)]/2/7 = - “QR (5.9)

dpg ™ 5[-7cosaB+8coszB+(1-cosAB)cosbw4?lcosBsinZlenAY-l]/h (5.10)

One should note that the diagonal components (5.8) have precisely tue
form of the (£=0) ground levcl RE surface defined by (2.5). The excited
(k=1) level RE surfaces consist of threce coples of ground level RE surface
with the middle (Q) one upside down and twice as deep forlarge B;. Then the
rotor angular momentum R is mostly conserved and provides a gocd quantum
number R = J+1, J, or J-1 for well sepatatel P, Q, and R branches, The
vibrational momentum £ 1s defined by !ts component on the lab fixed J vector.

It is interesting to see what happens when D {s emall or zero. A plot
of the resulting spectrum fur Jme0 is shown in Fig. 9a .nd b. Fig. 9t
present: a magniflied view of trhe neightorhood of Bg=Q,

One should note that the upper brarch of level trajectories in Fig. 9b
has a palr of triangular regions which cortain two fold clusters for IBg>O and
|B& |[<1.2. Each triangular reg.on is surrounded on Its upper side by reglons
containing mostly three-fold clustezs on one side and mostly four-fold
clusters on the other side and separatrix .eglons in betwacn., In other words,
each triangular region in Fig. 9b resembles the triangular replon tha middle
of Fig. 8 which {s duz to 5 th iank tensors huving producad stable two fold
clusters. ‘This was auite scovprising to find in the spectra of a 4th rauk
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tensor which generaly has only unstable saddle points on two-fold axes. How
then can stable classical rotation be established on a two- fold axis for
small Bg?

The 3D plots of RE surfaces in Fig. 10 show clearly that stable valleys
or pealks exist on two- fold axes for low values of B;. The Coriolis
interaction can stabilize an otherwise unstable motlon just as a magnetic
field can stabilize orbits in a quadrupole lon trap. Comparison of the
top- surface in the first two plots in Fig. 10 (for B£=0.0 and B;=0.5) reveals
that the latter has developed valleys on the two- fold axls., The top- surface
for B;=0.0 resembles the v=4,6(n/6) surface in Fig. 7#and supports three-fold
clusters only. The middle surface for B{=0.5 (Fig. 10(b)) has the same
shape only upside down, and it corresponds to the lower limit for stable
two- fold precession on this surface. The top surface with Bg=1.0 (Fig. 10(c))
has a shape similar to the v=0.,41(n/6) surface in Fig. 7(b). It supports
only four- fold precessicn and corcresponds to the upper limit for two- fold
precession on the top surface. However, at B{=1.0 the two-fold clusters are
still very strong in the middle region as seen in Figs. 9§or 10).

By comparing Figs. 9 and 10 for various values of Bf it is seen that
very complicated spectral patterns are described quite simply and accurately
by the RE surface plctures even in the presence of resonant Coriolis mixing
at small Bg. Furthermore, each point on the surface corresponds to a

articular eigenstate combination of vib:ational states {|“1|Z>|H_1>} or else
r|P>|Q>IR>}. The former are body-defined angular momentum states which will
be more convenlent bases to use in the limit nf Bz=0, i.e., when the Born-
Oppenheimer approximation for vibrational wavefunctions is valid,

Other interesting points of comparison between spectra in Fig.9 and RE
surfaces in Fig. 10 include B;=1.3 when the lower surface is almost flat, and
crossover points or conical intersections at B;=2.0 and 3.0. The physical
interpretation of these patterns and dynamlics must await future uvork.,

C. Two- fold Clusters in Asymmetric Tops

As a final example we show the J=10 energy levels and RE surface
trajectorles for an asymmetric rigid top in Fig. 11, This example shows that
absence of high symmetry does not necessarily prevent the existence of
cluster patterns and semiclassical analysis., The detalls of tue asymmetric
top analysis are discussed In [13] and are based upon earlier work by
Kinglzg] and Colwell, Handy, and Millerl30), The two-fold or C2(x) and
Cz(y) clusters in Flg, 1l are analogous to the C3 ane C, clusters for the
octahedral symmetry in Fig. 3. The C,(y) clusters are impossible when the
v-axis sits on saddle points. SFg (or Cglig) and asymmetric tops repre ent two
extremes in molecular symmetry. Between these extremes there should be a
broad range of molecules with fascinating examples of spectral patterns and
rovibronic dynamics. A clear plcture of this dynamics can be obtaired from
analysis of rotational energy surface,
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octahedral clusters,)

Fig. 1l.
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